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Abstract. We discuss the explicit construction of the Schrödinger equations admitting a
representation through some family of general polynomials. Almost all solvable quantum potentials
are shown to be generated by this approach. Some generalization has also been performed in higher-
dimensional problems.

1. Introduction

Over the past few years supersymmetric quantum mechanics based on shape invariance and
intertwining concepts has undergone significant progress [1–10]. Its technique has started
to influence not only the traditional branches of physics such as atomic, nuclear and high-
energy physics, which originally stimulated its emergence [11], but also the classical areas
of mathematical physics and the theory of differential equations. Recently, in [12, 13]
the detailed investigation of a factorization technique has been performed for one specific
form of second-order differential equations (SODEs) with polynomial coefficients, admitting
polynomial solutions based on Rodrigue’s formula [14]. We choose similar initial arguments to
construct explicitly a wide class of quantum mechanical (QM) potentials for one-dimensional
(1D) Schr̈odinger equations admitting (after separation of the asymptotic behaviour of the
wavefunction) polynomial solutions.

Our consideration and analysis in sections 2 and 3 shares a common subject with
Natanzon’s papers [15, 16] but differs from them by being more general because of the fact that
we work with Papperitz’s rather than the hypergeometric equation with arbitrary positions of
the singular points (in complex domain). Moreover, in addition to transformations described
in [15, 16] where the spectral parameters are preserved, we take into consideration the cases
when we change the roles of spectral parameters in the original polynomial system and in the
Schr̈odinger equation (generalizing in this way the known consideration of the Coulomb case,
see the discussion in the text).

One more thing we would like to mention is that Turbiner’s approach [17] to the generalized
Bocher problem is very close to ours for the exactly solvable case (though in [17] the possibility
of the transformation to the appropriate Sturm–Liouville problem is merely mentioned rather
than investigated in full detail). However, for quasi-solvable cases our approach differs from
those in [17] because we do not use the factorization ideas and investigate symmetry properties

0305-4470/00/061233+13$30.00 © 2000 IOP Publishing Ltd 1233



1234 G Krylov and M Robnik

but concentrate on the connection of the appropriate polynomials with the corresponding family
of Schr̈odinger equations. It allows us to explicitly define the additional relations for the
operator to be zero-grading (in terms of [17]) and gives a method of regular construction of
quasi-solvable potentials (all inside some definite family) with an arbitrarily chosen number
of algebraically constructed eigenstates.

The last remark we should make is that we do not intend to perform the comparison
of the proposed approach with all other known methods of construction of exactly solvable
quantum potentials as this should definitely be the topic of a review paper rather than an original
research paper. However, in our opinion, the proposed approach will definitely influence the
reviewing of the results obtained in other ways (especially for quasi-solvable cases) and further
establishment of its inherent relations with other methods.

This paper is organized as follows. In section 2 we start with the special case leading
to polynomial solutions, namely the polynomial family introduced in [12, 13]. Section 3
is devoted to the explicit construction of the Schrödinger equation corresponding to that
polynomial family, and to the presentation of a classification scheme as well as the discussion
of its relation to the known solvable cases. In section 3 we represent the generalization of
the proposed scheme in some directions, namely the application to the partial differential
equations and to higher-order polynomial coefficients, and we demonstrate one non-trivial
irreducible example and make some concluding remarks on the applicability of the considered
approach.

2. One construction of polynomial solutions for SODE

Practically all solvable 1D quantum problems correspond to those which can be transformed
to the equation of hypergeometric type, and that gives eigenvalues of bound states by the
requirement of finite hypergeometric series, thus being a polynomial of a given order [14, 18].
We start the consideration from the case leading precisely to that known situation, though from
a slightly different another point of view. Recently [12, 13], it was shown that the eigenvalue
problem for the operator of the form

L̂ = 1

W(x)

d

dx

(
A(x)W(x)

d

dx

)
(1)

leads to polynomial solutions with special requirements for the functionsA andW . Namely,
if we chooseA(x) as a polynomial of at most second order, let us define,

A(x) = a0 + a1x + a2x
2 (2)

andW(x) as a non-negative function such that1
W(x)

d
dx (A(x)W(x)) is at most a first-order

polynomial

B(x) = b0 + b1x (3)

then we can construct an orthogonal polynomial family which is a solution for the eigenvalue
problem, namely for the operator̂L,

1

W(x)

d

dx

(
A(x)W(x)

d8n(x)

dx

)
+ γn8n(x) = 0. (4)

The polynomials given by the classical Rodrigue’s formula [14], withn = 0, 1, 2, . . . ,

8n(x) = an

W(x)

(
d

dx

)n (
An(x)W(x)

)
(5)
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are orthogonal with respect to the weight function W(x) on the interval(a, b), chosen such
that the following conditions hold:

A(a)W(a) = A(b)W(b) = 0. (6)

This can be shown by a classical consideration as exposed, for example, in [14]. In this
way we can choose the interval as being inside the roots of the polynomialA(x), if the latter
one possesses the real roots, or the roots ofW(x), including infinity points, in the case of the
functions tending to zero at infinity, or some combination of both alternatives. The eigenvalues
γn turn out to be given as [12, 13]

γn = −n
(
(A(x)W(x))′

W(x)

)′
− n(n− 1)

2
A′′(x) (7)

which in case (2) and (3) is equal to expression (11).
At that point, having enough information, we can write and solve the equation forW(x),

namely

d

dx
(A(x)W(x))− B(x)W(x) = 0. (8)

As the equation is a linear ODE of the first order its solution has the form, explicitly

W(x) = C

A(x)
exp

{∫
B(x) dx

A(x)

}
= C exp

{∫
b0 + b1x

a0 + a1x + a2x2
dx

} (
a0 + a1x + a2x

2
)−1

(9)

and, of course, the integral we wrote is easy to calculate∫
b0 + b1x

a0 + a1x + a2x2
dx = b1 log(a0 + a1x + a2x

2)

2a2

−
(−2a2b0 + a1b1) arctan

(
(a1 + 2a2x)/

√
−a2

1 + 4a0a2

)
a2

√
−a1

2 + 4a0a2

(10)

but for our purposes it is convenient to use it in the form we representW(x) in equation (9).
It is evident from the direct substitution that in the case of (2) and (3) the eigenvaluesγn

are given explicitly by

γn = −n(b1 + a2(n− 1)) (11)

while the equation for the polynomials becomes

(a0 + a1x + a2x
2)8′′n(x) + (b0 + b1x)8

′
n(x)− n(b1 + a2(n− 1))8n(x) = 0. (12)

Equation (12) is a SODE with three singular points at the roots ofA(x) (we denote them as
x1, x2) and infinity. It is easy to check that if the roots ofA(x) are different the equation is
of hypergeometric type (generally speaking a Papperitz equation [14]), whilst it is confluent
hypergeometric when the roots are coincident.

The question naturally appearing is what sort of quantum mechanical problems could be
associated with the polynomial family we have described. To answer it, there is a natural way,
namely we can try to implement an adjusted pair of coordinate and similarity transformations
for equation (12) in such a way as to obtain the constant coefficient at the second derivative
and a zero coefficient at the first derivative level. The resulting equation will be of Schrödinger
type. Let us perform this programme.
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3. Transformation to the Schrödinger equation

Let us forget for a while thatA(x) andB(x) are polynomials. We have the equation

A2(x)y
′′(x) +A1(x)y

′(x) + εy(x) = 0 (13)

with arbitrary coefficient functionsA1(x) andA2(x). First, we make the variable change

x = F(u)
d

dx
= 1

F ′(u)
d

du

d2

dx2
= 1

F ′2(u)
d2

du2
− F ′′(u)
F ′3(u)

d

du
(14)

and choose the transformation in a form allowing us to introduce some as yet undefined but
prescribed function of the new coordinateω(u) (which we could define later for the sake of
the most convenient choice)

ω2(u)[F ′(u)]2 = A2(x) (15)

to obtain

ω2(u)y ′′(u) + y ′(u)ω(u)
(

2A1(F (u))− A′2(F (u))√
A2(F (u))

+ ω′(u)
)

+ γy(u) = 0 (16)

where a prime denotes differentiation with respect to the function’s argument. Now we
implement the similarity transformationY (u) = exp(χ(u))y(u) and choose the functionχ(u)
in such a way as to kill the term with the first derivative, so that we must have

χ ′(u) = 1

2ω(u)

(
A′2(F (u))

2
√
A2(F (u))

− A1(F (u))√
A2(F (u))

− ω′(u)
)
. (17)

Then, the equation is transformed into

ω2(u)Y ′′(u) + Y (u)

(
γ − A1(F (u))

2

4A2(F (u))
+
A1(F (u))A

′
2(F (u))

2A2(F (u))

− 3A′2(F (u))
2

16A2(F (u))
+
ω′(u)2

4
+
A′′2(F (u))

4
− A

′
1(F (u))

2
− ω(u)ω

′′(u)
2

)
= 0

(18)

which can be considered as Schrödinger-type equation if we manage to identify and to separate
some free constant parameter in it atY (u) (playing the role of ‘energy’), after the division of
both terms byω2(u). As we see in the trivial choice ofω(u) = 1 we simply obtain the
Schr̈odinger equation with the energyγ and the potentialV (u) given by

V (u) = +
4A1(F (u))

2 − 8A1(F (u))A
′
2(F (u))− 3A′2(F (u))

2

16A2(F (u))
− 1

2A
′
1(F (u))− 1

4A
′′
2(F (u)).

(19)

One known case when we have to chooseω(x) not equal to unity is the Coulomb potential
as we will see below. Now we can use the fact that bothA2(x) andA1(x) are polynomials,
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choosing them in accordance with (2) and (3) asA2(x) = a2x
2+a1x+a0 andA1(x) = b1x+b0

to obtain the equation

Y ′′(u) + Y (u)

[
a2 − b1 + 2γ

2ω2(u)
+
ω′(u)2

4ω2(u)
− ω′′(u)

2ω(u)
− 3(a1 + 2a2F(u))

2

16ω2(u)
(
a0 + a1F(u) + a2F(u)

2)
+
(a1 + 2a2F(u)) (b0 + b1F(u))

2ω2(u)
(
a0 + a1F(u) + a2F(u)

2) − (b0 + b1F(u))
2

4ω2(u)
(
a0 + a1F(u) + a2F(u)

2)
]
= 0.

(20)

Now, we start to analyse first systematically the simplest case putting functionω(u) to be
unity. Then, for the potential of the Schrödinger equation we have

V (u) = −a2

2
+
b1

2
+

3(a1 + 2a2F(u))
2

16
(
a0 + a1F(u) + a2F(u)

2) +
(a1 + 2a2F(u)) (b0 + b1F(u))

2
(
a0 + a1F(u) + a2F(u)

2)
+

(b0 + b1F(u))
2

4
(
a0 + a1F(u) + a2F(u)

2) . (21)

We can explicitly find the dependencex = F(u) by solving equation (15). Then, taking the
inverse function, we obtain forx

x = F(u) =



a1sinh
(

1
2

√
a2u

)2
+
√
a0a2 sinh(

√
a2u)

a2
a2 6= 0 D 6= 0

−a1 + (a1 + 2a2)e
√
a2u

2a2
a2 6= 0 D = 0

√
a0u + 1

4a1u
2 a2 = 0 a1 6= 0

1√
a0
u a2 = 0 a1 = 0 a0 6= 0

(22)

whereD = a2
1 − 4a0a2 is the discriminant forA2(x).

The explicit expression for the quantum potential can be obtained after the substitution
of (22) into expression (21) but for the general case the resulting formula becomes too
complicated. Specifying the values of the parametersai andbi it is possible to show that
almost all known solvable cases in quantum mechanics except the Coulomb potential, are
inside the potential family we constructed. The latter one will be analysed later when we try
to construct new potentials by choosing a non-trivialω(u) function. So let us first investigate
the caseω(u) = 1.

We shall classify the different cases by the roots of the polynomialA2(x). We have
two topologically different cases whenA2(x) is not degenerate, namely whenA2(x) hastwo
different roots and the discriminantD 6= 0, and the case ofone root with degeneracy 2,D = 0.
As one can easily see in the space of the parametersai the first case fills the region inside and
outside the conical surface for which the equation isD = 0. So we call the appropriate cases
regular and irregular (forD = 0), respectively. We shall refer to them sometimes as Jacobi
and Morse cases, based on the name of the appropriate polynomials (for the first one) and
solutions (the second one).

The additional cases appear in (22) as a result of the degeneracy of the polynomialA2(x),
it could be of the first order (we call this case Laguerre’s case;a2 = 0) and of the zero order
(further referred to as Hermite case;a2 = a1 = 0).

The first remark we would like to make is that our polynomial family has five parameters,
whereas spectra depend on highest power coefficients ofA2(x), A1(x) only, namelya2, b1
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(see equation (11)), and so we have the evident freedom of choosing some parameters without
losing characteristic features of the problem. Obviously, we can change parametersb0, a1

simply by the trivial change of the origin in thex variable and its scale. Then, if we choose
definite values ofa2, b1 (one of them could be considered as a scale for energy and could
be chosen, for example, as unity) we obtain a two-parametric family of polynomials and a
one-parametric family with the full isospectrality property. The variation of the parametera0

will then lead to the different non-trivial cases we have mentioned.
So, we start with the regular caseD 6= 0. Then the change of variablesx → u is given

by the top line in (22), and the orthogonal polynomials have the weight function given by

W(x) = exp{[(2a2b0 − a1b1)/a2D] arctan((a1 + 2a2x)/D)}
(a0 + a1x + a2x2)

1−b1/2a2
. (23)

As this family of polynomials has no commonly used name we will refer to it as generalized
Jacobi polynomials, where the ordinary Jacobi case corresponds toa0 = 1, a1 = 0, a2 = −1,
b0 + b1 = 2p, b0 − b1 = 2q corresponding to symmetrically chosen real roots at±1 and the
interval of orthogonality [−1, 1].

The quantum potential has the following general form: (z = √a2u):

V (u) = A +B sinhz +C coshz +D sinh 2z +E cosh 2z(
2
√
a0a2 coshz + a1 sinhz

)2 (24)

with the coefficientsA,B,C,D,E expressed through the original ones as

A = a2
2

(
5a2

1 − 20a0a2 + 8b2
0

)
+
(
3a2

1 − 4a0a2
)
b2

1 + 2a2
(−3a2

1 + 12a0a2 − 4a1b0
)
b1

B = 8
√
a0a2

(
b1− 2a2

)(
2a2b0 − a1b1

)
C = −4a1

(
2a2 − b1

)(
2a2b0 − a1b1

)
(25)

D = 4a1
√
a0a2

(
a2 − b1

)2
E = (a2

1 + 4a0a2
)
(a2 − b1)

2.

It is straightforward to see that the potential family (24) includes Pöschl–Teller potentials (both
ordinary and modified), Scarf-like potentials, Rosen–Morse and Manning–Rosen potentials
[19] with an appropriate choice of parameters.

In the singular caseD = 0 it is more convenient to introduce other parameters rather than
ai , namelya0 = α2, a2 = β2, a1 = 2αβ, automatically satisfying the degeneracy condition,
and then the weight function becomes

W(x) = (α + βx)−2+b1 exp

{
b1α − b0β

β2(α + βx)

}
(26)

and the potential reads, with the newly introduced coefficientsA,B,C,

V (u) = A +Be−βu +Ce−2βu

A =
(
b1− β2

)2
4β2

B = − (b1α − b0β)
(
b1− 2β2

)
2αβ2

C = (b1α − b0β)
2

4α2β2
.

(27)
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This evidently corresponds to the Morse class of potentials [18].
The case whenA2(x) becomes the first-order polynomial (a2 = 0), gives the following

formula for the weight:

W(x) = eb1x/a1 (a0 + a1x)
−1+b0/a1−a0b1/a

2
1 (28)

and for the potential

V (u) = A +Bu−2 +Cu2 (29)

with the new parametersA,B,C (not to be confused with those obtained above) expressed
through the old ones as

A = b1(a1b0 − a0b1)

2a2
1

B = (a2
1 − 2a1b0 + 2a0b1)(3a2

1 − 2a1b0 + 2a0b1)

4a4
1

C = 1
16b

2
1.

(30)

The resulting potentials, as we see, are the combination of a harmonic oscillator (HO)
potential plus a centrifugal potentialB/u2. And for the sake of completeness it is worthwhile
to mention that the case whenA2(x) is a constant (a2 = a1 = 0) corresponds to the ordinary
HO case with the oscillator position shifted by−b0/b1.

Before going further, let us construct the explicit representation for the wavefunctions of
the appropriate Schrödinger equation and let us discuss the bound states within this approach.
As we made two subsequent transformations to obtain the Schrödinger equation, the solution
in terms of polynomialsPn(x) has the form

Y (u) = exp{χ(u)}Pn(F (u)) (31)

whereχ(u) is given by (17) andF(u) is given by (15). The energy corresponding to this
eigenfunction turns out to be the sum ofγn (see equation (11)) and some constant factor
depending upon the parametersai, bi and leading to the shift of the energy’s origin. As the
family of orthogonal polynomials has infinity and a countable number of members, though the
class of the potentials includes not only those which grow indefinitely at infinity (supporting
bound states only), but also those with a finite number of levels (and finite ionization energy),
we have to understand the condition for a bound state in the system. Indeed, this is very simple
in the discussed case, the functionW(u) gives the asymptotic behaviour of the ground state
wavefunction and as the point transformationx = F(u) could be non-trivial, the resulting
high-order polynomialsPn(F (u)) can have growing behaviour at infinity which might more
than compensate that ofW(u) and thus makesY (u)’s norm infinite. Therefore, the condition
for the bound states is simply the condition for a finite norm ofY (u). Of course, an interesting
question appears as to whether the non-normalizable solutions of polynomial type correspond
to some physically significant features of the system, e.g. to quasi-bound states (long-lived
localized states) embedded in the continuum, but we will not discuss it here.

Now, we can consider other possible choices of the functionω(u). This is stimulated
by the known sequence of transformations for the Coulomb problem [18], where the first
step is the change of scale in a way to put an ‘energy’ parameter into the potential function
with a subsequent transformation of the original Schrödinger equation into a hypergeometric
equation.

As we can see from equation (20) the problem is purely algebraic and there are several
ways to try to obtain the free parameter which could be interpreted as energy. The first one is
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to chooseω(u) to satisfy the equations eitherω′(u)/ω(u) = k orω′′(u)/ω(u) = k, which will
produce a constant factor due to fractions including the appropriate ratios in equation (20).
The second one takes place whenω2(u) = A2(F (u))

−k, k > 0, which could lead to a free
coefficient in the potential due to cancellation of some denominators in (20). We shall not
pursue these cases any further, but treat the most important case instead. Namely, if the order
of the polynomialA2(x) is less than two, then new possible cases also appear, as we will see,
for k = −1, which turns out to be precisely the Coulomb case that we discuss below. The
last and more special case is realized whenA2(x) has different real roots and the coefficients
b0, b1 are chosen in such a way as to construct a common divisor (of the first order) for both
numerators and denominators in the potential. In this case choosingω(u) in the form of
ω(u) = (F (u)− x1) we also obtain a free coefficient in the potential. We will not consider all
the above-mentioned cases in detail here but restrict ourselves to one specific choice ofA2(x),
stimulated by the Coulomb problem.

Let us assume thatA2(x) = x and we will chooseω(u) in the formω2(u) = F(u)−k.
Then, if we choosek = −1, it is easy to see from equation (15) that the point canonical
transformation turns out to be identity, and we obtain the standard Coulomb case

Y ′′(u) +

[
−b

2
1

4
+
b0

2u2
− b2

0

4u2
− b0b1

2u
+
γ

u

]
Y (u) = 0. (32)

The casek = 1 is also a special case here, so we have the following expression for the
variable changex = e−u and the Schr̈odinger equation takes the form

Y ′′(u) +
[− 1

4(b0 − 1)2 − 1
2(b0b1− 2γ ) e−u − 1

4b
2
1 e−2u,

]
Y (u) = 0 (33)

which is the case of the quantum Morse potential.
For k 6= ±1 we obtain after integration of equation (15) the following expression for the

point transformation:

x = [ 1
2(k − 1)(u− C1)

]2/(1−k)
. (34)

The substitution of the last expression leads to a fairly complicated form of the Schrödinger
equation forY (u), but as one can show, there are no more cases except those we have mentioned,
where it is possible to obtain a free parameter in the role of ‘energy’.

The successful implementation of the construction of solvable Schrödinger potentials, as
we already have seen, was due to the evident existence of a polynomial solution of equation (12).
It is possible to find the generalization in more complicated cases, which is the topic of the
following section.

4. Some generalizations of the approach

As we saw, the main feature of the system considered was that the second-order differential
operatorL̂ (see equations (1) and (12)) preserves the linear subspaceMn of the polynomials of
ordern for all n. It was due to the special adjustment of the orders of polynomial coefficients
with the order of appropriate derivatives. This idea, of course, can be implemented not only
for a special case of SODE and polynomial coefficients up to second order, but in the much
more general case of linear partial differential equations (PDEs). Indeed, we can construct the
following general form of thenth-order linear differential operator̂L with the same property,
so that it preserves the space when acting in the space of the polynomials ofm variables
Ex = {x1, . . . , xm}. The general form of the appropriate linear PDEs reads

L̂Y (Ex) =
n∑
j=0

Pj+N(Ex)∂κj Y (Ex) = 0 (35)
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whereN is some non-positive integer number (whenN < 0 we have degenerate cases, see an
analogous discussion on SODEs in the previous section). We introduce a multi-indexκj as
thej th-order partial derivative over arbitrary combinations of variables in a standard way, by

∂κj =
∂i1

∂x
i1
1

· · · ∂
im

∂x
im
m

j = i1 + · · · + im. (36)

We also say that the weight ofκj equalsj and write it as #κj = j . It is worthwhile to point
out that we even do not need to demand the commutativity of the derivatives, so that the same
consideration could be applied for the non-commutative case (quantum groups and quantum
algebras see, e.g., [20]). Moreover, we can consider the operators which do not preserve such
finite-dimensional spaces, but map one into another (with higher dimension). The latter is just
the permission forN to be positive.

In the case of standard partial derivatives, when we are looking for the solution in terms
of kth-order polynomials in the ringF [x1, x2, . . . , xm], every term in the sum in (35) maps the
argument into the space spanned by the monomialsxκN+k = xi11 xi22 . . . ximm , {i1+· · ·+im = N+k}.
The latter space is a finite-dimensional vector space and a direct sum of the spaces of
symmetric homogeneous polynomials corresponding to different permutations of indices for
the monomials written above. We denote the space spanned by the definite monomials of order
k as(k)T[i1...im] ). Then we can write down the expression for the dimension for the image space
for the operator action

dimMN
k =

k+N∑
j=0

m∑
i1,...,im=0
i1+···+im=m

dim (j)T[i1...im] . (37)

Now, the construction of thekth-order polynomial solution

Yk(Ex) =
k∑
j=0

Cκj x
κj (38)

leads simply to the linear algebraic problem for a non-trivial solution for the coefficientsCκj .
At this point two different cases are possible. The first one is realized ifN 6 0, that

is the maximal order of the polynomial coefficient is less than or equal to the PDE’s order.
In this case we can always satisfy the system of equations because the number of linear
homogeneous equations forCκj is precisely equal to dimM0

k. Then, the non-triviality condition
is the condition of zero determinant for the corresponding matrix obtained from equating all
coefficients at monomials of typexκi to zero, and this gives us the spectral parameter for
the polynomial family, namely the quantization condition imposed on the coefficientP0(x).
Then, considering the problem over the field of complex numbers, we can always construct a
polynomial family in this case for some quantized value of the coefficientP0(x). In contrast,
when we have the conditionN > 0, we are still obliged to fulfil dimMN

k conditions but
only for dimM0

k coefficientsCκj . The resulting system becomes overcomplete which simply
means thatwe can construct some separate polynomial solutionsof equation (35) for onlya
few levels, maybe even one, that is for definite choice ofn and, additionally for special values
of some of the coefficients in the coefficient polynomials.

It is very interesting to mention here that in the one-dimensional (1D) case considered in
the previous section for SODEs, the appropriate matrix turns out to be upper-three-diagonal,
with additional relationship between elements, so that its determinant forj th-order system has
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the following form (preserving notions for coefficient ofA2(x), A1(x)):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ b0 2a0 . . . 0

0 γ + b1 2b0 . . . 0

. . . . . . . . . . . .

0 . . . (j − 1)b0 + (j − 1)(j − 2)a1 j (j − 1)a0

0 . . . γ + (j − 1)b1 + (j − 1)(j − 2)a2 jb0 + j (j − 1)a1

0 . . . 0 γ + jb1 + j (j − 1)a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which leads to one degenerate eigenvalue (rather thanj + 1) for a givenj th-order polynomial.

What realizations of the scheme described above could be successfully used for the
construction of the solutions for the Schrödinger equation except those which we demonstrated
in section 2? There are three evident but not easy ways. The first and the easiest one is the
consideration of 1D problems with higher-order polynomials, and we intend to demonstrate
this in one example, setting aside its full description as a subject for a separate publication. We
consider the construction of the polynomial solutions starting from the third-order polynomials
to give the representation of the problems emerging there. Let us have the equation of the
form

x3y ′′(x) + α(x2 − 1)y(x) + (βx + γ )y(x) = 0. (39)

Then, in the same manner as we did in section 2 we map the equation to the Schrödinger
equation via two subsequent point transformationsx = 4/u2, and the gauge transformation

χ(u) = C1 + 1
64αu

4 + 1
2(3− 2α) logu. (40)

The resulting equation has the form

Y ′′(u) + (γ − V (u)) Y (u) = 0 (41)

V (u) = (3α − α2)u2

8
+
u6α2

256
+

4α2 − 8α − 16β + 3

4u2
. (42)

The solution will be given by the formula (31), but now we have to construct the polynomials
in a non-trivial way, because Rodrigue’s formula is no longer applicable. So we start to look
directly for the polynomial solution of equation (39). Let us define thenth-order polynomial
aspn(x) =

∑n
i=0 cix

i . When we substitute this ansatz into equation (39) and equate to zero
the coefficients at all orders of the independent variablex, we obtainn + 1 equations for
n coefficientsci, i = 0, . . . , n − 1, γ (the last coefficientcn should be chosen in order to
satisfy the standardization condition). Therefore, the system is overcomplete and for a non-
trivial solution we must specify some additional coefficient in a unique way or to impose one
additional condition on some parameters of the system. In our case the only choice we have is
to addβ to the list of coefficients to be found. Let us find then the solution, for example, for
n = 1, 2 explicitly starting from the casen = 1.

Solving the set of equations forc0, β, γ , two solutionsc±0 = ±1,β = −α, γ± = ∓α can
be constructed that give forY1(u),

Y±1 (u) = eαu
4/64

(
∓1 +

4

u2

)
u

1
2 (3−2α) (γ = ∓α). (43)

We have to impose the finiteness condition for the norm of the solution, so that in our case
α < − 1

4. The last requirement follows from the simultaneous demand of proper behaviour at
infinity that leads toα < 0 and integrability atu = 0. However, as one can see, in the interval
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− 1
2 < α 6 − 1

4 the potential becomes repulsive asu → 0. The last property means that we
have to impose the boundary conditionY (u)|u=0 = 0 which leads to the restrictionα 6 − 1

2
on the admittable region for the variation ofα.

Then, both solutions will be, as one can see, bound states of the system and the solution
for largerγ will have zero not only atu = 0 but also atu = 2, which evidently corresponds
to the first excited state, whereas the first one corresponds to the ground state.

In a similar way, forn = 2 we obtain the conditionβ = −2 (1 +α) and the following
three solutions forc0, c1, γ :

c
(1)
0 = −

α

α + 1
c
(1)
1 = 0γ (1) = 0

c
(±)
0 =

α

α + 2
c
(±)
1 = ±

√
2α (2α + 3)

α + 2
γ (±) = ±2

√
2α (2α + 3).

(44)

Then, the appropriate eigenfunctions are given by

Y (2)(u) = eαu
4/64u3/2−α

(
16

u4
− α

α + 1

)
Y (±)(u) = eαu

4/64u3/2−α
(

16

u4
+

α

α + 2
± 4
√

2α (2α + 3)

(α + 2)u2

)
.

(45)

A similar consideration to that performed forn = 1 shows that the admittable region for the
parameterα is now given byα 6 − 5

2. Then the constructed eigenstates represent the ground
and the first two excited states for the potential

V (u) = α2u6

256
− α (α − 3) u2

8
+

4α2 + 24α + 35

4u2
. (46)

The remarkable feature of the example we considered was that we construct some eigenstates
corresponding to a given potentialusing a polynomial ansatz of a given order. The solution for
those cases corresponding to the ground state and to the excited states was given by the number
of the roots of the polynomials of a given order. This is in contradistinction with the standard
solvable situation where the polynomial’s order is equal to the quantum number because for
the classical polynomial family, thenth-order polynomial has preciselyn roots on an interval
where the family is defined, unlike in the general case, where the real polynomial can have
complex (non-real) roots.

From the last comment we can make some useful conclusions. As we see, if the order of
the polynomial coefficient functions is different from the order of the equation, the polynomial
solutions in general do not exist except for the special values of the parameters. In the example
that has been considered, we have to put one additional condition on the parameter to construct
a non-trivial solution. Nevertheless, after an appropriate restriction of the region for some
parameters (α in the considered example) and by fixing the value for some other (expressingβ

throughα in the discussed case) we were able to construct eigenfunctions of some low-lying
eigenstates

Now, we return to the discussion of other possible generalizations of the proposed
approach.

The second admissible choice is to consider, in the same way as we did, the Schrödinger
equations solvable in the momentum representation. As it is easy to understand, physically
interesting potentials of polynomial type with order greater than two will correspond to
higher-order differential equations, so that we can, for example, ask which Schrödinger
equations can be constructed, based on the polynomial solutions for an equation like
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A4(x)y
′′′′(x) + A3(x)y

′′′ + · · · = 0? We stop the discussion of this possibility at this point
leaving it for future publications.

The last and the most complicated case corresponds to the consideration of genuine higher-
dimensional problems and appropriate PDEs. The most difficult obstacle to be overcome
there is the necessity to perform transformations from original equation for polynomials to
the equation of the Schrödinger type. Although the theory of characteristics is applicable in
this case, the resulting equation, at first glance, could hardly be interpreted in terms of the
Schr̈odinger type. As for the latter one we must demand the existence of a pure constant term
included into the coefficient function at zero derivative (see the discussion after equation (18)).
Nevertheless, this direction is of great importance for gaining deeper insight into integrability
and solvability problems in quantum mechanics.

5. Discussion

In summary, we have demonstrated that one can construct explicit formulae for the family
of the orthogonal polynomials depending on five parameters, and thus we can associate with
them the family of isospectral potentials (isospectrality with respect to three free parameters)
which include almost all known quantum mechanically exactly solvable potentials. Some
generalization of the approach to higher-dimensional equations (PDEs) as well as to the higher-
order ODEs has been proposed.

We may conclude with a speculative idea. If one were to put forward the requirement for
the bound states of a quantum system (in the analytical case) as a demand on the polynomial
type of the reduction of the wavefunction (which seems to be reasonable and evidently fulfilled
for all currently known 1D solvable cases), then the immediate conclusion follows that the
proposed approach (with its generalizations discussed) includesall analytically solvable cases.
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